ANNEXURE B- DESIGN CALCULATIONS

Checked by:

Lafarge: Additives and Coal Stockyard Pollution Control Dams Geocell/Soilcrete Infill Protection Layer over GMB

Lafarge

The protection layer needs to be anchored adequately to resist activating forces. Reinforcement is permanent and the number and type of reinforcement (if required) is determined by the following:

a) The base material (i.e. the embankment) density;

b) The material of infilling and its unit weight;

c) Length of slope;

d) Slope gradient;

e) Angle of internal friction of the fill material and of the slope soil (the smaller of the two is used),

f) Height / Depth of LCS

g) Presence of geomembrane liner (if any).

The mechanism of driving and resisting forces for a geocell protected slope is shown in Fig 1.

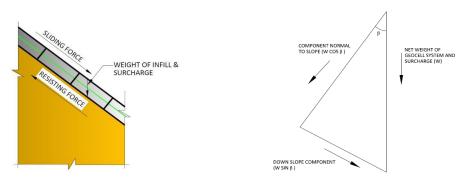


Fig. 1: Mechanism of driving and resisting forces for stability analysis in infinite slope

Before selecting an reinforcement method, the net sliding force (NSF), or the force that would have to be overcome to keep the slope from sliding along the failure plane with a safety factor, is determined. If the NSF is negative, then the friction force between the overburden and the liner and the slope is sufficient to hold the system in place.

Note that all friction angles used below are minimum residual values from lab testing, conducted under saturated conditions

Net Sliding Force = $\{ [d \times Ls \times \gamma] \times [(sin\beta) - (cos\beta \times tan\varphi)] \}$

		FORCE CAL	CULATION
d - Depth of the overburden layer (m)			0.25
Ls - Inclined length of the Slope (m)			13.6
 Unit weight of the overburden (kN/m³) 			20
ß - Slope angle (°)			18.43
ø - Lowest value of angle of interface friction (°) (GMB-Sn	nth vs. PROT)		20
Factor of Safety against Sliding			1
	$d \times Ls \times \gamma$		68.00
	sinβ		0.32
	cosβ		0.95
	tanφ		0.36
NSF	(KN/m width)		-1.98
Ultimate Sliding Force	(KN/m width)		-1.98

Geocell Tensile Properties		
Geocell ultimate tensile strength (KN/m)		26
Tendon strength reduction factor		1.5
Tendon allowable tensile strength (KN)		17.33
	FOS	-8.770

FOS CALCULA	TION
Driving Force	21.50 kN/m
Resisting Force	23.48 kN/m
FOS	1.092

RESULT:

The Slope does not require reinforcement to be stable, when analysing the inteface between the protection layer & geomembrane below. The calculation also assumes that the geocell will not carry any tensile load, exludes the interlocking nature of the geocell blocks and does not take account of the cementious nature of the soilcrete which is conservative.

Lafarge: Additives and Coal Stockyard Pollution Control Dams GMB and GCL

Lafarge

LCS needs to be anchored adequately to resist activating forces. This is key to performance of the LCS. Reinforcement is permanent and the number and type of reinforcement is determined by the following:

a) The base material (i.e. the embankment) density;

b) The material of infilling and its unit weight;

c) Length of slope;

d) Slope gradient;

e) Angle of internal friction of the fill material and of the slope soil (the smaller of the two is used),

f) Height / Depth of LCS

g) Presence of geomembrane liner (if any).

The mechanism of driving and resisting forces for a geocell protected slope is shown in Fig 1.

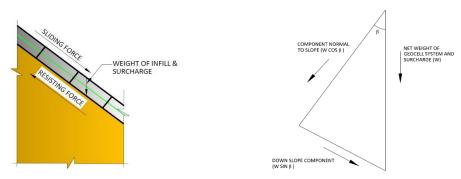


Fig. 1: Mechanism of driving and resisting forces for stability analysis in infinite slope

Before selecting an reinforcement method, the net sliding force (NSF), or the force that would have to be overcome to keep the slope from sliding along the failure plane with a safety factor, is determined. If the NSF is negative, then the friction force between the overburden and the liner and the slope is sufficient to hold the system in place.

Note that all friction angles used below are minimum residual values from lab testing, conducted under saturated conditions

$Net Sliding Force = \{ [d \times Ls \times \gamma] \times [(sin\beta) - (cos\beta \times tan\varphi)] \}$

	FORCE CAL	CULATION
d - Depth of the overburden layer (m)		0.25
Ls - Inclined length of the Slope (m)		13.6
- Unit weight of the overburden (kN/m ³)		20
ß - Slope angle (°)		18.43
ø - Lowest value of angle of interface friction (°) (GMB-Tex vs. GCL)		15
Factor of Safety against Sliding		1
$d \times Ls \times \gamma$		68.00
sinβ		0.32
cosβ		0.95
tan arphi		0.27
NSF (KN/m width		4.22
Ultimate Sliding Force (KN/m width		4.22

1.5mm Geomembrane22GMB ultimate tensile strength (KN/m)22Tendon strength reduction factor1.5Tendon allowable tensile strength (KN)14.67FOS3.477

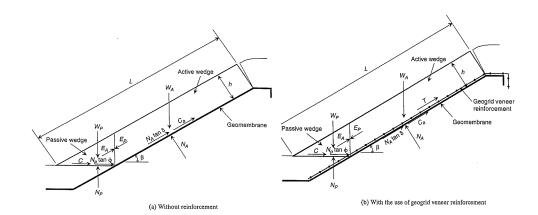
FOS CALCULATION Driving Force 23.48 kN/m Resisting Force 17.29 kN/m FOS 0.736

RESULT:

The Geomembrane Layer may take the veneer load due to the lower angle of friction between the GM and the GCL, however if there is load transfer through, or if the GTX interface properties were higher then 15 degrees, then the specified geomembrane would be required to take load. For this scenario to occur, a complete failure of the protection layer would have had to occur, with the soilcrete layer and the geocell sliding , which is very unlikely, given the interlocking nature of the geocell and soilcrete infill. This check does however show that the geomembrane has sufficient capacity to prevent failure, in this unlikely scenario.

LAFARGE ADDITIVES AND COAL STOCKYARD PCDs VENEER SOIL COVERS DESIGN

Title	Lafarge Additives and Coal Stockyard Pollution Control Dams
Project number	5707
Client	Lafarge Lichtenburg
Designed	MM
Checked	JN
Approved	JN


DESCRIPTION

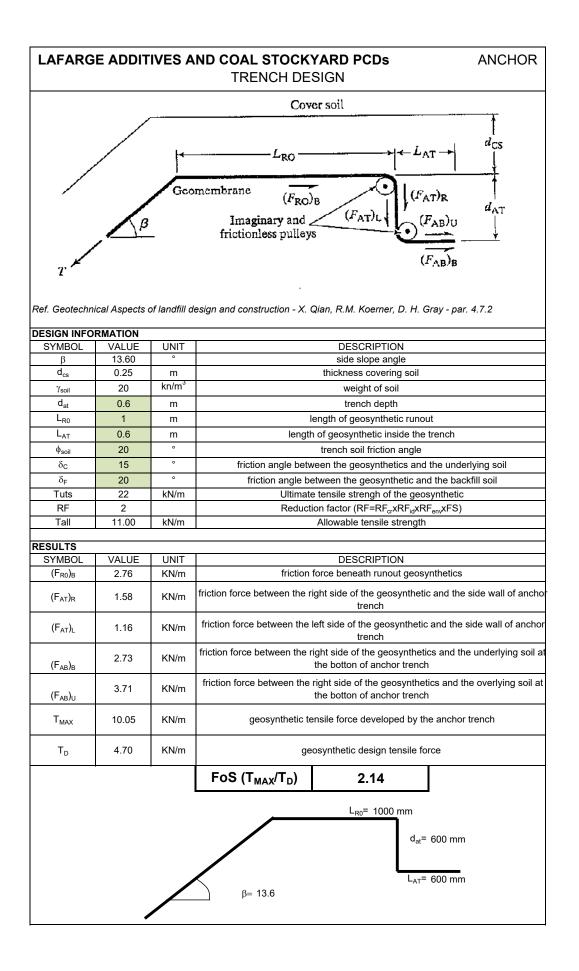
Veneer Reinforcement Calculations for Protection Layer on 1:3 Embankments.

COMPANY'S INFORMATIC	DN
Name	Lafarge Lichtenburg

Ref. Designing with Geosynthetics - 5th edition - Robert M Koerner 3.2.7 pag 380-383

Whenever a slope is covered with soil, a stability calculation should be made to assess the potential for sliding failure of the soil on the barrier layer.Four situations come to mind: landfill liners with leachate collection sand or gravel above them until such time that the solid waste acts as a passive resistance restraint; surface impoundment liners where the cover soil is placed over the geomembrane to shield it from ultraviolet light, heat degradation, and equipment damage; landfill covers that have topsoil and protection soil placed over the geomembrane; and general slopes and embankments containing geotextiles or erosion control materials being covered with a layer of soil. In all cases the soil layer is relatively thin (0.3 to 1.0 m), hence the sliding stability of such a veneer of cover soil is the issue.

- WA = total weight of the active wedge,
- WP = total weight of the passive wedge,
- NA = effective force normal to the failure plane of the active wedge,
- NP = effective force normal to the failure plane of the passive wedge,
- $\gamma =$ unit weight of the cover soil,
- h = thickness of the cover soil,
- L =length of slope measured along the geomembrane,
- β = soil slope angle beneath the geomembrane,
- ϕ = friction angle of the cover soil,
- δ = interface friction angle between cover soil and geomembrane,
- Ca = adhesive force between cover soil of the active wedge and the geomembrane,
- ca = adhesion between cover soil of the active wedge and the geomembrane,
- C = cohesive force along the failure plane of the passive wedge,
- c = cohesion of the cover soil,
- EA = interwedge force acting on the active wedge from the passive wedge,
- EP = interwedge force acting on the passive wedge from the active wedge, and
- FS = factor of safety against cover soil sliding on the geomembrane.


DESIGN INFORMATION

DESIGN INFO	RIVIATION			
SYMBOL	VALUE	UNIT	DESCRIPTION	
γ	20	kN/m ³	unit weight of cover soil (soilcrete)	
ф	42.00	deg	friction angle of the cover soil	
С	20	kpa	cohesion of the cover soil	
h	0.25	m	thickness of the cover soil	
β	13.60	0	soil slope angle	
L	24	m	length of the slope	
Ca	0		adhesion between cover soil of the active wedge and geomembrane	
δ	20	0	interface friction angle between GTX and smooth geomembrane	

ITHOUT RE	INFORCEME	NT			
SYMBOL	VALUE	UNIT	DESCRIPTION		
Wa	114.8	kN/m ³	total weight of the active wedge		
Na	111.6	kN	effective force normal to the failure plane of the active wedge		
Ca	0.0	kN	adhesive force between cover soil and gsy		
Wp	2.7	kN/m ³	total weight of the passive wedge		
C	21.3	kN	cohesive force along the failure plane of the passive wedge		
а	6.2		n/a		
b	-16.2		n/a		
С	2.0		n/a		
			FoS _{unreinf}	2.49	

The slope is safe from sliding block failure, without reinforcement.

Calculations below show the FOS against sliding failure, as well as anchor trench requirements accounting for the protection geotextiles anchorage needs to mobolise the necessary tension.

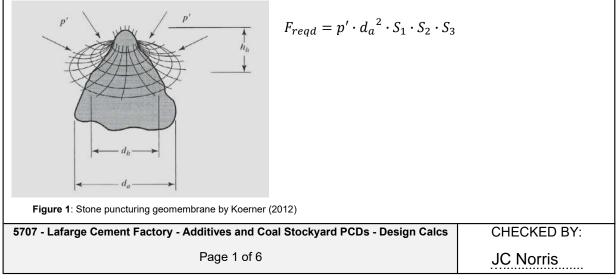
JOB NO. 5707

TITLE: Lafarge Cement Factory - Additives and Coal Stockyard PCDs

GEOTEXTILE PROTECTION LAYER (FOR GEOMEMBRANE) DESIGN CALCULATIONS

Protection of the geomembrane for strains induced by large sized particles, of particular concern during the installation of a geomembrane.

This may occur either:


- (a) When a a stone or pebble is left on top of the GCL below a geomembrane in a composite lining system, and large isolated particles have found there way onto the surface of the GCL. BELOW CASE OR/.
- (b) When a stone layer is used above a geomembrane, or when a cushioning layer has large or oversized particles as part of its make-up. ABOVE CASE

1) For the BELOW CASE

Where there is a GCL, Koerner (2012) supported by Yu, Rowe (2018) and Brachman (2008; 2010) support the use of careful quality control when installing the geomembrane, with the isolated stones needing to be physically removed from the GCL prior to final placement. The CQA and material specification has been carefully worded to include this as part of the installation process and is to be monitored carefully on site.

There is 0% tolerance for particles over 15mm in diameter, oversized particles are to be removed prior to geomembrane placement.

A design check is conducted based on Koerner (2012) to check the ability of the geomembrane to resist puncture forces under the design loading. Figure 1 below provides a visual representation of the deformation imparted in the geomembrane under load with a sharp object protruding into the membrane.

JOB NO. 5707

TITLE: Lafarge Cement Factory - Additives and Coal Stockyard PCDs

GEOTEXTILE PROTECTION LAYER (FOR GEOMEMBRANE) DESIGN CALCULATIONS

Where:

- F_{req} = required vertical puncturing force to be resisted
- d_a = average diameter of the puncturing aggregate
- p' = pressure exerted on the geomembrane
- S1 = Protrusion factor of the puncturing object
- S2 = Scale factor to adjust the ASTM D4833 puncture test value that uses 8.0mm diameter puncture problem to the d_a specified
- S3 = Shape factor to adjust the ASTM D4833 flat puncture probe to the actual shape of aggregate

Table 2.9 from Koerner (2012) provides recommended values for puncture analysis (i.e. S1, S2 and S3 values) for different aggregate shapes and sizes. Table 2.9 is reproduced below:

Puncturing Object	S1	S2	S3	<u>NOTE:</u>
Angular and Large	0.9	0.8	0.9	in excess of 25mm
Angular and Small	0.6	0.6	0.7	is considered large
Sub-Rounded and Large	0.7	0.6	0.6	
Sub-Rounded and Small	0.4	0.4	0.5	
Rounded and Large	0.5	0.4	0.4	
Rounded and Small	0.2	0.2	0.3]

1.1) DESIGN CALCULATION

The max. design pressure on the 1.5mm geomembrane is 52 kPa. Assuming a 20mm stone is left within the GCL by accident:

$$F_{reqd} = p' \cdot d_a^{\ 2} \cdot S_1 \cdot S_2 \cdot S_3$$

$$F_{reqd} = 52 \cdot 1000 \cdot (0.0020)^2 \cdot 0.9 \cdot 0.8 \cdot 0.9$$

$$F_{reqd} = 21.06 N$$
(R1) 21.06 N
Puncture Resistance of a 1.5mm/2mm Geomembrane meeting GRI -GM13 See GRI-GM13 is: 480 N / 640 N Table 1(b)
FOS against PUNCTURE (1.5mm HDPE) = 11.40 SAFE
This is an accidental case design ensuring that the geomembrane will not be punctured should after the CQA, something be missed.

5707 - Lafarge Cement Factory - Additives and Coal Stockyard PCDs - Design Calcs
Page 2 of 6

CHECKED BY: JC Norris

JOB NO. 5707	COMPLET	ED BY:
TITLE: Lafarge Cement Factory - Additives and Coal Stockyard PCDs	M Muv	'hali
GEOTEXTILE PROTECTION LAYER (FOR GEOMEMBRANE) DESIGN CALCULATIONS		
1.2) GEOMEMBRANE STRAIN CALCULATION		
For a GRI-GM13 compliant, 1.5mm thick membrane: Min Yield Strength: 22 kN/m as per ASTM Min Yield Elongation: 12 % D 6693		
Based on ASTM D 6693, the gage length of a sample is 33mm therefore a 12% strain at 22kN load equates to a deflection of 3.96 mm		
Calculating the Secant Modulus at yield therefore equates to:		
$E_s = \frac{\sigma_y}{\delta_y}$		
$E_s = \frac{22\ 000}{0.00396}$		
$E_s = 5.55 MPa$		
As Geomembrane behave ELASTICALLY AND THEN plastically as it approa lower then what would be expected at 2 to 3% strains, with Brachman & Gudina (2008) reporting Secant Moduli of between 240 and 310 MPa at 2% strain across various products available on the market. However, as the GRI-GM3 does not require or stipulate this requirement, the calculated Es has been used in the calculation to be conservative.	aches yield	
Based on the calculated force imparted onto the secondary geomembrane based on the worst case loading conditions [See value (R1) calculated above The following strain would be imparted into the geomembrane:	e]	
$\delta_F = \sigma_F / E_s$		
$\delta_F = \frac{21.06 N}{5.55 \times 10^6 N/m}$		
$\delta_F = 2.04 imes 10^{-5} m$		
$\delta_F=0.00204~mm/$ 1.5mm (thick membrane)		
$\varepsilon_F = 0.25\%$	ε =	2.53E-01
With a geomembrane strain not exceeding 0.25% under the design loading the design loading can be considered to be safe even in the accidental design case		
5707 - Lafarge Cement Factory - Additives and Coal Stockyard PCDs - Design Calcs Page 3 of 6	CHECKE JC Nor	

TITLE: Lafarge Cement Factory - Additives and Coal Stockyard PCDs

GEOTEXTILE PROTECTION LAYER (FOR GEOMEMBRANE) DESIGN CALCULATIONS

2) For the ABOVE CASE

In order to effectively protect the geomembrane from large sized stones, debris and light traffic loads a protection layer (geocell with soilcrete infill) has been specified. No drainage layer is required as the facility is designed to store liquids above the Class C liner

However, choosing a non-woven geotextile with sufficient mass per m² becomes critical to provide sufficient protection to the geomembrane, if used in place of the 100mm sandy silt protection layer as defined in Type C Landfill Liner as per GNR 636.

Based on a number of ASTM 5514 experiments conducted by Wilson-Fahmy, et al. (1996) Narejo et al. (1996), and Koerner et al. (1996) based on a limit state approach, an empirical relationship was developed to show relative performance and protection of a geotextile when used to protect a geomembrane. This is supported by work by Brachman & Guidana (2008) as well as Yu & Rowe (2018).

The Koerner Equation is as follows:

$$p_{allow} = \left(50 + 0.000045 \ \frac{M}{H^2}\right) \left[\frac{1}{MF_s \times MF_{PD} \times MF_A}\right] \left[\frac{1}{RF_{CR} \times RF_{CBD}}\right]$$

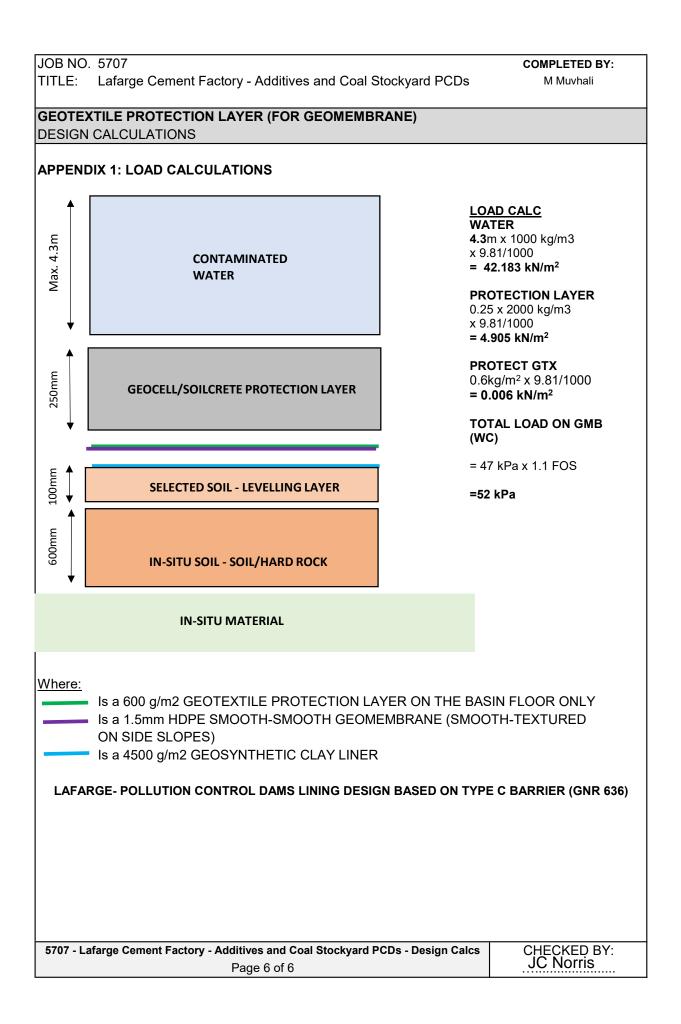
Where:

p _{allow} =	allowable pressure (kPa)	155 kPa as	below Appx 1
M =	geotextile mass per unit area (g/m²)	Solve for	
Н =	protrusion height (m)	20mm	
MF _s =	modification factor for protrusion shape	1 (Angular)	
MF _{PD} =	modification factor for packing density	1.0 (Isolated)
MF _A =	modification factor for arching in solids 1.00		
RF _{CR} =	reduction factor for long term creep	1.5	
RF _{CBD} =	reduction factor for long term chemical/biological degradation	1.1 (Mild Lea	achate)
FOS =	factor of safety against failure	2.0	
<u>Note:</u> Mo	dication Factors adopted based on Koerner (2012)	1.00	0.59171598
		0.59	34.35
155 =	$\left(50 + 0.00045 \left(\frac{M}{(0.022)^2}\right)\right) \left[\frac{1}{1.0 \times 1.0 \times 1.0} \right] \left[\frac{1}{1.5 \times 1.1}\right]$		37.40

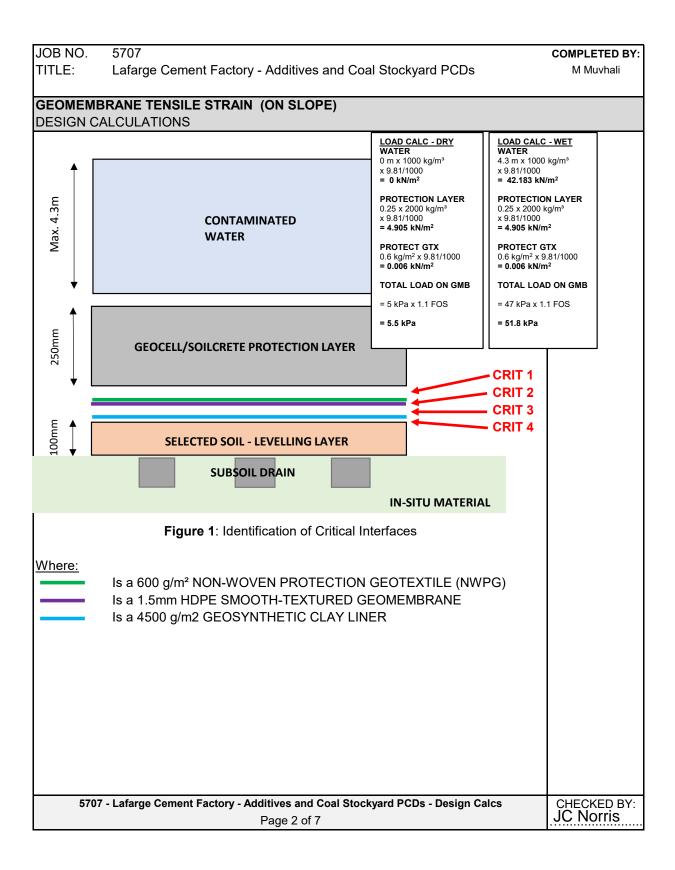
Solving for M:

 $M (g/m^2) = 183.5$

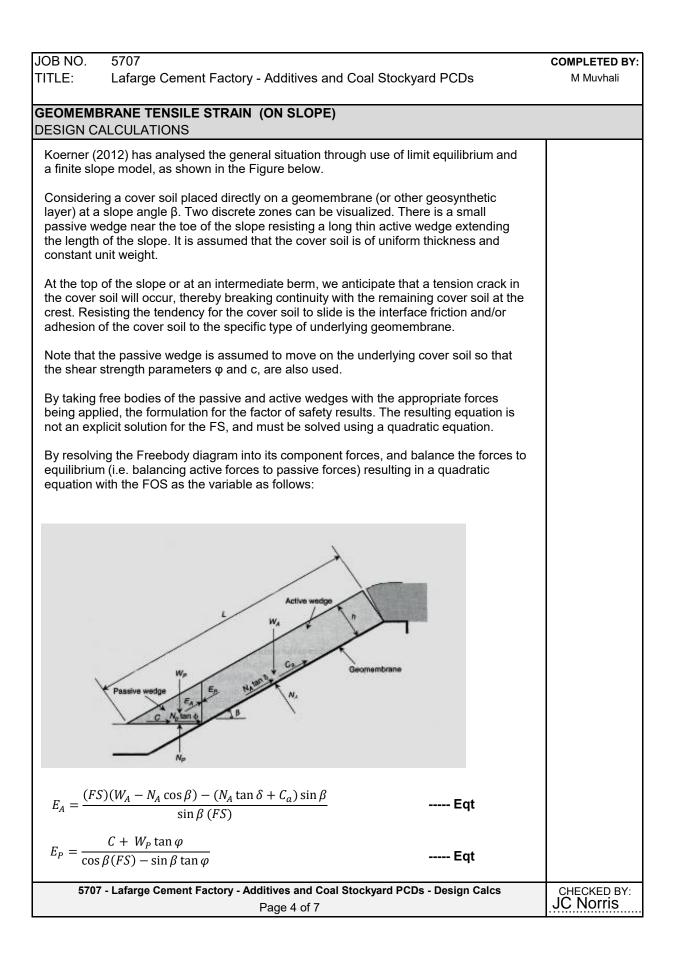
Therefore at minimum **600 g/m² geotextile would be required** to completely remove the need for a 100mm silty sand cushioning layer


5707 - Lafarge Cement Factory - Additives and Coal Stockyard PCDs - Design Calcs	
Page 4 of 6	JC Norris

Used in Calcs:


3) REFERENCES

- 1) **Brachman, R.W.I., Gudina, S., (2008)**. Geomembrane strains from coarse gravel and wrinkles in a GM/GCL composite liner. Geotext. Geomembranes 26 (6), 488–497.
- Brachman, R.W.I., Sabir, A., (2010). Geomembrane puncture and strains from stones in an underlying clay layer. Geotext. Geomembranes 28 (4), 335–343.
- Wilson-Fahmy, R.F., Narejo, D., and Koerner R.M., (1996). "Puncture Protection of Geomembranes. Part I: Theory," *Geosynthetics Int.*, Vol. 3, No. 5, 1996, pp. 605-628.
- 4) Narejo, D., and Koerner R.M., Wilson-Fahmy, R.F., (1996). "Puncture Protection of Geomembranes. Part II: Experimental," *Geosynthetics Int.*, Vol. 3, No. 5, 1996, pp. 629-653.
- Koerner R.M., Wilson-Fahmy, R.F., and Narejo, D., (1996). "Puncture Protection of Geomembranes. Part III: Examples," *Geosynthetics Int.*, Vol. 3, No. 5, 1996, pp. 655-676.
- Koerner, R.M, (2012). Designing with Geosynthetics, Volume 1 and 2.
 Published 2012 by Xlibris, New York, USA. ISBN 978-1-4628-8289-2


5707 - Lafarge Cement Factory - Additives and Coal Stockyard PCDs - Design Calcs	CHECKED BY:
Page 5 of 6	JC Norris

JOB NO. 5707 TITLE: Lafarge Cement Factory - A	dditives and	Coal Stockya	rd PCDs		COMPLETED BY: M Muvhali
ITLE: Lafarge Cement Factory - Additives and Coal Stockyard PCDs					W Wavnan
GEOMEMBRANE TENSILE STRAIN (ON SLOPE) DESIGN CALCULATIONS					
1) INTRODUCTION In order to ensure the stability of the geor	membrane a	und limit			
tensile strains developing in the geomem			ė		
composite lining system on sloped areas of the cell, a slope stability					
assessment is conducted as follows:	,		, ,		
VENEER REINFORCEMENT CHECK					
Due to the fact that the lining system con	tains a numl	ber of potentia	lly		
critical interfaces with different shear stre	ngths at eac	ch interface, ea	•		
must be modelled as part of the 1) and 2)					
lining system will not slip when used in a	sloping appl	ication.			
2) IDENTIFYING CRITICAL INTERFACE	S				
As noted by Koerner (2012), multi-lined s as the liner protection layer particularly w gravitationally induce shear stress throug Koerner further notes that if all interface s then the slope angle, stability is achieved involved is a small amount to achieve ela by studies by Wilson-Fahmy et. Al (1996)	hen the facil h the multi-l shear streng and the onl stic equilibri	ity is empty, ined system. H ths are greate y deformation um. This is su	lowever, r pported		
and Giroud & Beech (1989)					
For the Additives and Coal Stockyard PC	Ds Design.	the slopes are	uniform a	round	
the facility at a grade of 1V:3H, with the exception of the access ramp which has a grade					
of 1V:12H and the retaining wall for the C	•		has been	analysed	
for stability, see Pages 56-58 of the Preli	minary Desig	- ·			4
The steepest slope is therefore:	0/	MAX. SL	JPE		4
Additives PCD	% 33.33	Grade (H) 1V :	3.0	Deg (°) 18.43	4
Coal Stockyard PCD	33.33		3.0	18.43	1
		IV.	0.0	10.40]
In principle therefore, if the lowest interfa	oo friction h	atwoon materia			
is above 18.43°, then the slope will be sta			313		
all interface layers without mobilising the					
5707 - Lafarge Cement Factory - Additi	ves and Coal	Stockyard PCDs	- Design Ca	alcs	CHECKED BY:
Ра	ge 1 of 7				JC Norris

TITLE:	5707 Lafarge Ceme	ent Factory - A	dditives and	Coal Stocky	ard PCDs		COMPLETED BY M Muvhali
		E STRAIN (O	N SLOPE)				
DESIGN CA	LCULATIONS						
	interfaces are ic Fable 1 : Identific		-				
			Interface	Properties			
ID	Layer Above	Layer Below	ø' (°)	c' (kPa)			
1	Soilcrete	600 g/m² NWPG	20	0			
2	600 g/m² NWPG	1.5mm GMB - SMTH	11	5			
3	1.5mm GMB - TXTRD	GCL	16	10	Using Residual Values		i
4	GCL	Base Prep	18	5	Using Resi	dual Values	
5							
6							
Lavar		GRADING			Shear Properties		
Layer	Gravel (%)	Sand, Silt (%)	Clay (%)	φ°	c' (kPa)	(cm/s)	
Layer	Gravel (%) 13-6mm	Sand, Silt (%) 6-0.075mm	Clay (%) <0.075	φ°	c' (kPa)	(CIII/S)	
	13-6mm	6-0.075mm	<0.075	·			
Soilcrete Base Prep	13-6mm 0 0	6-0.075mm 100 44	<0.075 0 53	42 29	c' (kPa)	N/A 2.65E-09	
Soilcrete Base Prep t is critical th confirmed vi Compliant m and used as	13-6mm 0 0 hat interface frid ia laboratory tes naterials with ind	6-0.075mm 100 44 ctions between sting, and used dustry standar ting regime with	 <0.075 0 53 53 d in the designed in the designed in the designed in the properties of the p	42 29 aterials are gn calculation s regulations ties ascertai	10 19.5 ns were source ned recorde	N/A 2.65E-09 ed d	
Soilcrete Base Prep t is critical th confirmed vi Compliant m and used as n the tables	13-6mm 0 0 hat interface frid ia laboratory tes	6-0.075mm 100 44 ctions between sting, and used dustry standar ting regime with e test records	 <0.075 0 53 53 d ifferent m d in the designed ds as well as the proper attached as 	42 29 aterials are gn calculation s regulations ties ascertain appendices	10 19.5 ns were source ned recorde to this calcu	N/A 2.65E-09 ed d lation	
Soilcrete Base Prep It is critical th confirmed vi Compliant m and used as in the tables These value 3) DESIGN Over and a	13-6mm 0 0 hat interface frid ia laboratory tes naterials with ind s part of the test s above, with the es were then use CALCULATION bove conducting checks on the m	6-0.075mm 100 44 ctions between sting, and used dustry standar ting regime with the test records ed in the design VS g traditional sl	 <0.075 0 53 53 a different m d in the design ds as well as well as the proper attached as gn calculation ope stability 	42 29 aterials are gn calculation s regulations ties ascertain appendices ns that follow analysis usir	10 19.5 ns were source ned recorde to this calcu v in Section 3 ng software	N/A 2.65E-09 ed d lation 3.	
Soilcrete Base Prep It is critical th confirmed vi Compliant m and used as in the tables These value 3) DESIGN Over and a additional c was conduc This was ca	13-6mm 0 0 hat interface frid ia laboratory tes naterials with ind s part of the test s above, with the es were then use CALCULATION bove conducting checks on the m	6-0.075mm 100 44 ctions between sting, and used dustry standar ting regime with the test records ed in the design NS g traditional ship iobilisation of for ical geosynthe	<0.075 0 53 0 53 0 53 0 53 53 53 53 53 54 55 55 55 55 55 55 55 55 55 55 55 55	42 29 aterials are gn calculations ties ascertain appendices ns that follow analysis usir the geosynth , using	10 19.5 ns were source ned recorde to this calcu v in Section 3 ng software	N/A 2.65E-09 ed d lation 3.	

JOB NO. 5707

TITLE: Lafarge Cement Factory - Additives and Coal Stockyard PCDs

GEOMEMBRANE TENSILE STRAIN (ON SLOPE) DESIGN CALCULATIONS Putting $E_A = E_P$ and factorising for FS: $W_A = OB + \gamma h^2 \left(\frac{L}{h} - \frac{1}{\sin\beta} - \tan\beta\right)$ $a(FS)^2 + b(FS) - c = 0$ Where: $N_A = W_A \cos \beta$ $C_a = c_a (L - \frac{h}{\sin \beta})$ $a = (W_A - N_A \cos \beta) \cos \beta$ $b = -[(W_A - N_A \cos \beta) \sin \beta \tan \varphi + (N_A \tan \delta + C_a) \sin \beta \cos \beta + \sin \beta (C + W_P \tan \varphi)]$ $W_P = OB + \frac{\gamma h^2}{\sin 2\beta}$ and $N_P = W_P + E_P \sin \beta$ $c = (N_A \tan \delta + C_a) \sin \beta^2 \tan \phi$ $C = \frac{(c)(h)}{\sin \beta}$ With the legend as follows: $W_{A} =$ total weight of the active wedge W_P = total weight of the passive wedge $N_A =$ effective force normal to the failure plane of the active wedge $N_{P} =$ effective force normal to the failure plane of the passive wedge ν = unit weight of the cover soil h = thickness of the cover soil L = length of the slope measured along the geomembrane β = soil slope angle beneath the geomembrane ø = friction angle of the cover soil δ = interface friction angle between cover soil and geomembrane C_a = adhesive force between cover soil of the active wedge and the geomembrane, c_a = adhesion between cover soil of the active wedge and the geomembrane C = cohesive force along the failure plane of the passive wedge, с = cohesion of the cover soil E_A = interwedge force acting on the active wedge from the passive wedge

 $E_P =$ interwedge force acting on the passive wedge from the active wedge

FS = factor of safety against cover soil sliding on the geomembrane.

OB= Overburden pressure from waste above

The calculation is conducted below on the steepest slope, using the highest loading, with the most critical interface (as identified from the slope stability analysis conducted). Conceivably, if the FOS is acceptable for this case, all cases with higher friction properties under less loading will therefore have a higher FOS.

5707 - Lafarge Cement Factory - Additives and Coal Stockyard PCDs - Design Calcs CHECKED BY: JC Norris Page 5 of 7

JE UNIT kN/m³ kN/m³ 00 deg 5 m 13 ° 6 m • °	GN INFORMATION DESCRIF Unit weight of cover friction angle of the of cohesion of the cohesion of the soil slope length of th adhesion betwee int. friction angle (Protection	e soil (Soilcrete) cover soil & GMB e cover soil e cover soil angle e slope en cover soil				
DESI JE UNIT 0 kN/m³ 00 deg 0 kpa 5 m 13 ° 6 m 0 °	DESCRIP unit weight of cover friction angle of the of cohesion of the thickness of the soil slope length of the adhesion betwee int. friction angle (Protection	e soil (Soilcrete) cover soil & GMB e cover soil e cover soil angle e slope en cover soil				
JE UNIT kN/m³ kN/m³ 00 deg 5 m 13 ° 6 m • °	DESCRIP unit weight of cover friction angle of the of cohesion of the thickness of the soil slope length of the adhesion betwee int. friction angle (Protection	e soil (Soilcrete) cover soil & GMB e cover soil e cover soil angle e slope en cover soil				
JE UNIT kN/m³ kN/m³ 00 deg 5 m 13 ° 6 m • °	DESCRIP unit weight of cover friction angle of the of cohesion of the thickness of the soil slope length of the adhesion betwee int. friction angle (Protection	e soil (Soilcrete) cover soil & GMB e cover soil e cover soil angle e slope en cover soil				
kN/m³ 00 deg 5 m 13 ° 6 m ° °	unit weight of cover friction angle of the of cohesion of the thickness of the soil slope length of the adhesion betweet int. friction angle (Protection	e soil (Soilcrete) cover soil & GMB e cover soil e cover soil angle e slope en cover soil				
00 deg kpa 5 m 13 ° 6 m	friction angle of the of cohesion of the thickness of the soil slope length of the adhesion betwee int. friction angle (Protection	e cover soil & GMB e cover soil e cover soil angle e slope en cover soil				
6 m	cohesion of the thickness of th soil slope length of th adhesion betwee int. friction angle (Protection	e cover soil e cover soil angle e slope en cover soil				
5 m 13 ° 6 m	soil slope length of th adhesion betwee int. friction angle (Protectio	angle e slope en cover soil				
6 m	length of th adhesion betwee int. friction angle (Protectio	e slope en cover soil				
•	adhesion betwee int. friction angle (Protectio	en cover soil				
	int. friction angle (Protectio					
		n Layer - SMTH GMB)				
WITHOU						
	IT DEINEODCEMENT					
WITHOUT REINFORCEMENT SYMBOL VALUE UNIT DESCRIPTION						
JE UNIT	DESCRIF	TION				
6 kN/m³	total weight of the	total weight of the active wedge				
4 kN	fective force normal to the failure plane of the active wed					
) kN	adhesive force between cover soil and gsy					
kN/m³	total weight of the passive wedge					
8 kN	ohesive force along the failure	ohesive force along the failure plane of the passive wedg				
)	n/a	n/a				
0	n/a	n/a				
)	n/a					
	FoS _{unreinf}	2.17				
)	0	n/a D n/a n/a	n/a n/a n/a			

5707 - Lafarge Cement Factory - Additives and Coal Stockyard PCDs - Design Calcs	CHECKED BY:
Page 6 of 7	JC Norris

JOB NO. TITLE:	5707 Lafarge Cement Factory - Additives and Coal Stockyard PCDs	COMPLETED BY: M Muvhali
	RANE TENSILE STRAIN (ON SLOPE) ALCULATIONS	
3) REFERE	NCES	
	M., Wilson-Fahmy, R.F., and Narejo, D., (1996). "Puncture Protection of anes. Part III: Examples," <i>Geosynthetics Int.,</i> Vol. 3, No. 5, 1996, pp. 655-676.	
	. M, (2012) . Designing with Geosynthetics, Volume 1 and 2. 2012 by Xlibris, New York, USA. ISBN 978-1-4628-8289-2	
,	amy, R.F., Narejo, D., and Koerner R.M., (1996). "Puncture Protection of anes. Part I: Theory," <i>Geosynthetics Int.</i> , Vol. 3, No. 5, 1996, pp. 605-628.	
,	amy, R.F., Narejo, D., and Koerner R.M., (1996). "Puncture Protection of anes. Part I: Theory," <i>Geosynthetics Int.</i> , Vol. 3, No. 5, 1996, pp. 605-628.	
-	. V., Dixon, N. (2003a) " Stability of Landfill Lining Systems: Report No. Review," Environment Agency, Bristol UK. ISBN 85705945 X	
-	. V., Dixon, N. (2003b) " Stability of Landfill Lining Systems: Report No. " Environment Agency, Bristol UK. ISBN 85705945 X	
5707	- Lafarge Cement Factory - Additives and Coal Stockyard PCDs - Design Calcs Page 7 of 7	CHECKED BY: JC Norris